翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Tannaka–Artin problem : ウィキペディア英語版
Dieudonné determinant
In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by .
If ''K'' is a division ring, then the Dieudonné determinant is a homomorphism of groups from the group GL''n''(''K'') of invertible ''n'' by ''n'' matrices over ''K'' onto the abelianization ''K''
*
/(''K''
*
) of the multiplicative group ''K''
*
of ''K''.
For example, the Dieudonné determinant for a 2-by-2 matrix is
: \det \left(c} a & b \\ c & d \end}\right) =
\left\lbracec} -cb & \text a = 0 \\ ad - aca^b & \text a \ne 0 \end}\right. .
==Properties==
Let ''R'' be a local ring. There is a determinant map from the matrix ring GL(''R'') to the abelianised unit group ''R''ab with the following properties:〔Rosenberg (1994) p.64〕
* The determinant is invariant under elementary row operations
* The determinant of the identity is 1
* If a row is left multiplied by ''a'' in ''R'' then the determinant is left multiplied by ''a''
* The determinant is multiplicative: det(''AB'') = det(''A'')det(''B'')
* If two rows are exchanged, the determinant is multiplied by −1
* The determinant is invariant under transposition

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dieudonné determinant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.